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1 Introduction

The characteristic that has enabled humanity to shape
the world is not strength, not speed, but intelligence.
Barring catastrophe, it seems clear that progress in
AI will one day lead to the creation of agents meet-
ing or exceeding human-level general intelligence, and
this will likely lead to the eventual development of sys-
tems which are “superintelligent” in the sense of being
“smarter than the best human brains in practically ev-
ery field” (Bostrom 2014). A superintelligent system
could have an enormous impact upon humanity: just as
human intelligence has allowed the development of tools
and strategies that let humans control the environment
to an unprecedented degree, a superintelligent system
would likely be capable of developing tools and strate-
gies that give it extraordinary power (Muehlhauser and
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Salamon 2012). In light of this potential, it is essential
to use caution when developing artificially intelligent
systems capable of attaining or creating superintelli-
gence.

There is no reason to expect artificial agents to be
driven by human motivations such as lust for power, but
almost all goals can be better met with more resources
(Omohundro 2008). This suggests that, by default, su-
perintelligent agents would have incentives to acquire
resources currently being used by humanity. (Can’t we
share? Likely not: there is no reason to expect arti-
ficial agents to be driven by human motivations such
as fairness, compassion, or conservatism.) Thus, most
goals would put the agent at odds with human interests,
giving it incentives to deceive or manipulate its human
operators and resist interventions designed to change or
debug its behavior (Bostrom 2014, chap. 8).

Care must be taken to avoid constructing systems
that exhibit this default behavior. In order to en-
sure that the development of smarter-than-human in-
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telligence has a positive impact on humanity, we must
meet three formidable challenges: How can we create
an agent that will reliably pursue the goals it is given?
How can we formally specify beneficial goals? And how
can we ensure that this agent will assist and cooperate
with its programmers as they improve its design, given
that mistakes in the initial version are inevitable?

This agenda discusses technical research that is
tractable today, which the authors think will make it
easier to confront these three challenges in the future.
Sections 2 through 4 motivate and discuss six research
topics that we think are relevant to these challenges.
Section 5 discusses our reasons for selecting these six
areas in particular.

We call a smarter-than-human system that reliably
pursues beneficial goals “aligned with human interests”
or simply “aligned.” To become confident that an agent
is aligned in this way, a practical implementation that
merely seems to meet the challenges outlined above will
not suffice. It is also important to gain a solid theoret-
ical understanding of why that confidence is justified.
This technical agenda argues that there is foundational
research approachable today that will make it easier
to develop aligned systems in the future, and describes
ongoing work on some of these problems.

Of the three challenges, the one giving rise to the
largest number of currently tractable research questions
is the challenge of finding an agent architecture that
will reliably pursue the goals it is given—that is, an
architecture which is alignable in the first place. This
requires theoretical knowledge of how to design agents
which reason well and behave as intended even in situa-
tions never envisioned by the programmers. The prob-
lem of highly reliable agent designs is discussed in Sec-
tion 2.

The challenge of developing agent designs which
are tolerant of human error has also yielded a number
of tractable problems. We argue that smarter-than-
human systems would by default have incentives to ma-
nipulate and deceive the human operators. Therefore,
special care must be taken to develop agent architec-
tures which avert these incentives and are otherwise
tolerant of programmer error. This problem and some
related open questions are discussed in Section 3.

Reliable, error-tolerant agent designs are only bene-
ficial if they are aligned with human interests. The diffi-
culty of concretely specifying what is meant by “benefi-
cial behavior” implies a need for some way to construct
agents that reliably learn what to value (Bostrom 2014,
chap. 12). A solution to this “value learning” problem
is vital; attempts to start making progress are reviewed
in Section 4.

Why these problems? Why now? Section 5 answers
these questions and others. In short, the authors believe
that there is theoretical research which can be done
today that will make it easier to design aligned smarter-
than-human systems in the future.

2 Highly Reliable Agent Designs

Bird and Layzell (2002) describe a genetic algorithm
which, tasked with making an oscillator, re-purposed
the printed circuit board tracks on the motherboard
as a makeshift radio to amplify oscillating signals from
nearby computers. The algorithm would not have found
this solution if simulated on a virtual circuit board pos-
sessing only the features that seemed relevant to the
problem. Intelligent search processes in the real world
have the ability to use resources in unexpected ways,
e.g. by finding “shortcuts” or “cheats” not accounted
for in a simplified model.

When constructing intelligent systems which learn
and interact with all the complexities of reality, it is
not sufficient to verify that the algorithm behaves well
in test settings. Additional work is necessary to verify
that the system will continue working as intended in ap-
plication. This is especially true of systems possessing
general intelligence at or above the human level: super-
intelligent machines might find strategies and execute
plans beyond both the experience and imagination of
the programmers, making the clever oscillator of Bird
and Layzell look trite.

Smarter-than-human systems could have an enor-
mous impact upon humanity (Bostrom 2014). With
great potential may come great risk: a system that
is not aligned with human interests could cause catas-
trophic damage (Yudkowsky 2008). Because the stakes
are so high, testing combined with a gut-level intuition
that the system will continue to work outside the test
environment is insufficient, even if the testing is exten-
sive. It is important to also have a formal understand-
ing of precisely why the system is expected to behave
well in application.

What constitutes a formal understanding? It seems
essential to us to have both (1) an understanding of
precisely what problem the system is intended to solve;
and (2) an understanding of precisely why this practi-
cal system is expected to solve that abstract problem.
The latter must wait for the development of practical
smarter-than-human systems, but the former is a theo-
retical research problem that can be approached today.

A full description of the problem would reveal the
conceptual tools needed to understand why practical
heuristics are expected to work. By analogy, consider
the game of chess. Before designing practical chess al-
gorithms, it is necessary to possess not only a predi-
cate describing checkmate, but also a description of the
problem in term of trees and backtracking algorithms:
Trees and backtracking do not immediately yield a prac-
tical solution—building a full game tree is infeasible—
but they are the conceptual tools of computer chess. It
would be quite difficult to justify confidence in a chess
heuristic before understanding trees and backtracking.

While these conceptual tools may seem obvious in
hindsight, they were not clear to foresight. Consider
the famous essay by Edgar Allen Poe about Maelzel’s
Mechanical Turk (Poe 1836). It is in many ways re-
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markably sophisticated: Poe compares the Turk to “the
calculating machine of Mr. Babbage” and then remarks
on how the two systems cannot be of the same kind,
since in Babbage’s algebraical problems each step fol-
lows of necessity, and so can be represented by mechani-
cal gears making deterministic motions; while in a chess
game, no move follows with necessity from the position
of the board, and even if our own move followed with
necessity, the opponent’s would not. And so (argues
Poe) we can see that chess cannot possibly be played
by mere mechanisms, only by thinking beings. From
Poe’s state of knowledge, Shannon’s (1950) description
of an idealized solution in terms of backtracking and
trees constitutes a great insight.

We must put theoretical foundations under the field
of general intelligence, in the same sense that Shannon
put theoretical foundations under the field of computer
chess.

Won’t the foundations be developed over time, dur-
ing the normal course of AI research? This is possible:
in the past, theory has often preceded application. But
the converse is also true: in many cases, application has
preceded theory. The claim of this technical agenda is
that, in safety-critical applications where mistakes can
put lives at risk, it is crucial that the theory come first.

A smarter-than-human agent would be embedded
within and computed by a complex universe, learn-
ing about its environment and bringing about desirable
states of affairs. How is this formalized? What met-
ric captures the question of how well an agent would
perform in the real world?1

Not all parts of the problem must be solved in ad-
vance: the task of designing smarter, safer, more reli-
able systems could be delegated to early smarter-than-
human systems, if the research done by those early
systems can be sufficiently trusted. It is important,
then, to focus research efforts particularly on parts of
the problem where an increased understanding is neces-
sary to construct a minimal reliable generally intelligent
system. Moreover, it is important to focus on aspects
which are currently tractable, so that progress can in
fact be made today, and on issues relevant to alignment
in particular, which would not otherwise be studied over
the course of “normal” AI research.

In this section, we discuss four candidate topics
meeting these criteria: (1) realistic world models, the
study of agents learning and pursuing goals while em-
bedded within a physical world; (2) decision theory, the
study of idealized decision-making procedures; (3) log-
ical uncertainty, the study of reliable reasoning with

1. Legg and Hutter (2007) provide a preliminary answer
to this question, by defining a “universal measure of intelli-
gence” which scores how well an agent can learn the features
of an external environment and maximize a reward function.
This is the type of formalization we are looking for: a scor-
ing metric which describes how well an agent would achieve
some set of goals. However, while the Legg-Hutter metric
is insightful, it makes a number of simplifying assumptions,
and many difficult open questions remain (Soares 2015a).

bounded deductive capabilities; and (4) Vingean reflec-
tion, the study of reliable methods for reasoning about
agents that are more intelligent than the reasoner. We
will now discuss each of these topics in turn.

2.1 Realistic World Models

Formalizing the problem of computer intelligence may
seem easy in theory: encode some set of preferences
as a utility function, and evaluate the expected utility
that would be obtained if the agent were implemented.
However, this is not a full specification: What is the set
of “possible realities” used to model the world? Against
what distribution over world models is the agent eval-
uated? How is a given world model used to score an
agent? To ensure that an agent would work well in re-
ality, it is first useful to formalize the problem faced by
agents learning (and acting in) arbitrary environments.

Solomonoff (1964) made an early attempt to tackle
these questions by specifying an “induction problem” in
which an agent must construct world models and pro-
mote correct hypotheses based on the observation of an
arbitrarily complex environment, in a manner reminis-
cent of scientific induction. In this problem, the agent
and environment are separate. The agent gets to see
one bit from the environment in each turn, and must
predict the bits which follow.

Solomonoff’s induction problem answers all three of
the above questions in a simplified setting: The set of
world models is any computable environment (e.g., any
Turing machine). In reality, the simplest hypothesis
that predicts the data is generally correct, so agents
are evaluated against a simplicity distribution. Agents
are scored according to their ability to predict their
next observation. These answers were insightful, and
led to the development of many useful tools, including
algorithmic probability and Kolmogorov complexity.

However, Solomonoff’s induction problem does not
fully capture the problem faced by an agent learning
about an environment while embedded within it, as a
subprocess. It assumes that the agent and environment
are separated, save only for the observation channel.
What is the analog of Solomonoff induction for agents
that are embedded within their environment?

This is the question of naturalized induction
(Bensinger 2013). Unfortunately, the insights of
Solomonoff do not apply in the naturalized setting. In
Solomonoff’s setting, where the agent and environment
are separated, one can consider arbitrary Turing ma-
chines to be “possible environments.” But when the
agent is embedded in the environment, consideration
must be restricted to environments which embed the
agent. Given an algorithm, what is the set of environ-
ments which embed that algorithm? Given that set,
what is the analogue of a simplicity prior which cap-
tures the fact that simpler hypotheses are more often
correct?

Technical problem (Naturalized Induction). What,
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formally, is the induction problem faced by an intelli-
gent agent embedded within and computed by its envi-
ronment? What is the set of environments which em-
bed the agent? What constitutes a simplicity prior over
that set? How is the agent scored? For discussion, see
Soares (2015a).

Just as a formal description of Solomonoff induc-
tion answered the above three questions in the context
of an agent learning an external environment, a formal
description of naturalized induction may well yield an-
swers to those questions in the context where agents are
embedded in and computed by their environment.

Of course, the problem of computer intelligence
is not simply an induction problem: the agent must
also interact with the environment. Hutter (2000) ex-
tends Solomonoff’s induction problem to an “interac-
tion problem,” in which an agent must both learn and
act upon its environment. In each turn, the agent both
observes one input and writes one output, and the out-
put affects the behavior of the environment. In this
problem, the agent is evaluated in terms of its ability
to maximize a reward function specified in terms of in-
puts. While this model does not capture the difficulties
faced by agents which are embedded within their envi-
ronment, it does capture a large portion of the problem
faced by agents interacting with arbitrarily complex en-
vironments. Indeed, the interaction problem (and AIXI
[Hutter 2000], its solution) are the basis for the “uni-
versal measure of intelligence” developed by Legg and
Hutter (2007).

However, even barring problems arising from the
agent/environment separation, the Legg-Hutter metric
does not fully characterize the problem of computer in-
telligence. It scores agents according to their ability
to maximize a reward function specified in terms of
observation. Agents scoring well by the Legg-Hutter
metric are extremely effective at ensuring their observa-
tions optimize a reward function, but these high-scoring
agents are likely to be the type that find clever ways to
seize control of their observation channel rather than
the type that identify and manipulate the features in
the world that the reward function was intended to
proxy for (Soares 2015a). Reinforcement learning tech-
niques which punish the agent for attempting to take
control would only incentivize the agent to deceive and
mollify the programmers until it found a way to gain a
decisive advantage (Bostrom 2014, chap. 8).

The Legg-Hutter metric does not characterize the
question of how well an algorithm would perform if im-
plemented in reality: to formalize that question, a scor-
ing metric must evaluate the resulting environment his-
tories, not just the agent’s observations (Soares 2015a).

But human goals are not specified in terms of en-
vironment histories, either: they are specified in terms
of high-level notions such as “money” or “flourishing
humans.” Leaving aside problems of philosophy, imag-
ine rating a system according to how well it achieves a
straightforward, concrete goal, such as by rating how

much diamond is in an environment after the agent has
acted on it, where “diamond” is specified concretely in
terms of an atomic structure. Now the goals are spec-
ified in terms of atoms, and the environment histories
are specified in terms of Turing machines paired with
an interaction history. How is the environment history
evaluated in terms of atoms? This is the ontology iden-
tification problem.

Technical problem (Ontology Identification). Given
goals specified in some ontology and a world model, how
can the ontology of the goals be identified in the world
model? What types of world models are amenable to
ontology identification? For a discussion, see Soares
(2015a).

To evaluate world models, the world models must
be evaluated in terms of the ontology of the goals. This
may be difficult in cases where the ontology of the goals
does not match reality: it is one thing to locate atoms
in a Turing machine using an atomic model of physics,
but it is another thing altogether to locate atoms in a
Turing machine modeling quantum physics. De Blanc
(2011) further motivates the idea that explicit mecha-
nisms are needed to deal with changes in the ontology
of the system’s world model.

Agents built to solve the wrong problem—such as
optimizing their observations—may well be capable of
attaining superintelligence, but it is unlikely that those
agents could be aligned with human interests (Bostrom
2014, chap. 12). A better understanding of natural-
ized induction and ontology identification is needed to
fully specify the problem that intelligent agents would
face when pursuing human goals while embedded within
reality, and this increased understanding could be a
crucial tool when it comes to designing highly reliable
agents.

2.2 Decision Theory

Smarter-than-human systems must be trusted to make
good decisions, but what does it mean for a decision to
be “good”? Formally, given a description of an environ-
ment and an agent embedded within, how is the “best
available action” identified, with respect to some set of
preferences? This is the question of decision theory.

The answer may seem trivial, at least in theory: sim-
ply iterate over the agent’s available actions, evaluate
what would happen if the agent took that action, and
then return whichever action leads to the most expected
utility. But this is not a full specification: How are
the “available actions” identified? How is what “would
happen” defined?

The difficulty is easiest to illustrate in a determin-
istic setting. Consider a deterministic agent embedded
in a deterministic environment. There is exactly one
action that the agent will take. Given a set of actions
that it “could take,” it is necessary to evaluate, for each
action, what would happen if the agent took that ac-
tion. But the agent will not take most of those actions.
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How is the counterfactual environment constructed, in
which a deterministic algorithm “does something” that,
in the real environment, it doesn’t do? Answering this
question requires a theory of counterfactual reasoning,
and counterfactual reasoning is not well understood.

Technical problem (Theory of Counterfactuals).
What theory of counterfactual reasoning can be used to
specify a procedure which always identifies the best ac-
tion available to a given agent in a given environment,
with respect to a given set of preferences? For discus-
sion, see Soares and Fallenstein (2014).

Decision theory has been studied extensively by
philosophers. The study goes back to Pascal, and has
been picked up in modern times by Lehmann (1950),
Wald (1939), Jeffrey (1983), Joyce (1999), Lewis (1981),
Pearl (2000), and many others. However, no satisfac-
tory method of counterfactual reasoning yet answers
this particular question. To give an example of why
counterfactual reasoning can be difficult, consider a de-
terministic agent playing against a perfect copy of it-
self in the classic prisoner’s dilemma (Rapoport and
Chammah 1965). The opponent is guaranteed to do the
same thing as the agent, but the agents are “causally
separated,” in that the action of one cannot physically
affect the action of the other.

What is the counterfactual world in which the agent
on the left cooperates? It is not sufficient to consider
changing the action of the agent on the left while hold-
ing the action of the agent on the right constant, be-
cause while the two are causally disconnected, they
are logically constrained to behave identically. Stan-
dard causal reasoning, which neglects these logical con-
straints, misidentifies “defection” as the best strategy
available to each agent even when they know they
have identical source codes (Lewis 1979).2 Satisfac-
tory counterfactual reasoning must respect these logical
constraints, but how are logical constraints formalized
and identified? It is fine to say that, in the counterfac-
tual where the agent on the left cooperates, all identical
copies of it also cooperate; but what counts as an iden-
tical copy? What if the right agent runs the same al-
gorithm written in a different programming language?
What if it only does the same thing 98% of the time?

These questions are pertinent in reality: practical
agents must be able to identify good actions in settings
where other actors base their actions on imperfect (but
well-informed) predictions of what the agent will do.
Identifying the best action available to an agent requires
taking the non-causal logical constraints into account.

2. As this is a multi-agent scenario, the problem of coun-
terfactuals can also be thought of as game-theoretic. The
goal is to define a procedure which reliably identifies the best
available action; the label of “decision theory” is secondary.
This goal subsumes both game theory and decision theory:
the desired procedure must identify the best action in all
settings, even when there is no clear demarcation between
“agent” and “environment.” Game theory informs, but does
not define, this area of research.

A satisfactory formalization of counterfactual reason-
ing requires the ability to answer questions about how
other deterministic algorithms behave in the counter-
factual world where the agent’s deterministic algorithm
does something it doesn’t. However, the evaluation of
“logical counterfactuals” is not yet well understood.

Technical problem (Logical Counterfactuals). Con-
sider a counterfactual in which a given deterministic
decision procedure selects a different action from the
one it selects in reality. What are the implications
of this counterfactual on other algorithms? Can logi-
cal counterfactuals be formalized in a satisfactory way?
A method for reasoning about logical counterfactuals
seems necessary in order to formalize a more general
theory of counterfactuals. For a discussion, see Soares
and Fallenstein (2014).

Unsatisfactory methods of counterfactual reasoning
(such as the causal reasoning of Pearl [2000]) seem pow-
erful enough to support smarter-than-human intelligent
systems, but systems using those reasoning methods
could systematically act in undesirable ways (even if
otherwise aligned with human interests).

To construct practical heuristics that are known to
make good decisions, even when acting beyond the over-
sight and control of humans, it is essential to under-
stand what is meant by “good decisions.” This requires
a formulation which, given a description of an envi-
ronment, an agent embedded in that environment, and
some set of preferences, identifies the best action avail-
able to the agent. While modern methods of counter-
factual reasoning do not yet allow for the specification
of such a formula, recent research has pointed the way
towards some promising paths for future research.

For example, Wei Dai’s “updateless decision theory”
(UDT) is a new take on decision theory that systemati-
cally outperforms causal decision theory (Hintze 2014),
and two of the insights behind UDT highlight a num-
ber of tractable open problems (Soares and Fallenstein
2014).

Recently, Bárász et al. (2014) developed a con-
crete model, together with a Haskell implementation,
of multi-agent games where agents have access to each
others’ source code and base their decisions on what
they can prove about their opponent. They have found
that it is possible for some agents to achieve robust
cooperation in the one-shot prisoner’s dilemma while
remaining unexploitable (Bárász et al. 2014).

These results suggest a number of new ways to ap-
proach the problem of counterfactual reasoning, and we
are optimistic that continued study will prove fruitful.

2.3 Logical Uncertainty

Consider a reasoner encountering a black box with one
input chute and two output chutes. Inside the box is
a complex Rube Goldberg machine that takes an input
ball and deposits it in one of the two output chutes.
A probabilistic reasoner may have uncertainty about
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where the ball will exit, due to uncertainty about which
Rube Goldberg machine is in the box. However, stan-
dard probability theory assumes that if the reasoner did
know which machine the box implemented, they would
know where the ball would exit: the reasoner is assumed
to be logically omniscient, i.e., to know all logical con-
sequences of any hypothesis they entertain.

By contrast, a practical bounded reasoner must be
able to know exactly which Rube Goldberg machine the
box implements without knowing where the ball will
come out, due to the complexity of the machine. This
reasoner is logically uncertain. Almost all practical rea-
soning is done under some form of logical uncertainty
(Gaifman 2004), and almost all reasoning done by a
smarter-than-human agent must be some form of log-
ically uncertain reasoning. Any time an agent reasons
about the consequences of a plan, the effects of running
a piece of software, or the implications of an observa-
tion, it must do some sort of reasoning under logical
uncertainty. Indeed, the problem of an agent reason-
ing about an environment in which it is embedded as a
subprocess is inherently a problem of reasoning under
logical uncertainty.

Thus, to construct a highly reliable smarter-than-
human system, it is vitally important to ensure that
the agent’s logically uncertain reasoning is reliable and
trustworthy. This requires a better understanding of
the theoretical underpinnings of logical uncertainty,
to more fully characterize what it means for logically
uncertain reasoning to be “reliable and trustworthy”
(Soares and Fallenstein 2015).

It is natural to consider extending standard prob-
ability theory to include the consideration of worlds
which are “logically impossible” (e.g., where a deter-
ministic Rube Goldberg machine behaves in a way that
it doesn’t). This gives rise to two questions: What, pre-
cisely, are logically impossible possibilities? And, given
some means of reasoning about impossible possibilities,
what is a reasonable prior probability distribution over
impossible possibilities?

The problem is difficult to approach in full general-
ity, but a study of logical uncertainty in the restricted
context of assigning probabilities to logical sentences
goes back at least to  Loś (1955) and Gaifman (1964),
and has been investigated by many, including Halpern
(2003), Hutter et al. (2013), Demski (2012), Russell
(2014), and others. Though it isn’t clear to what degree
this formalism captures the kind of logically uncertain
reasoning a realistic agent would use, logical sentences
in, for example, the language of Peano Arithmetic are
quite expressive: for example, given the Rube Goldberg
machine discussed above, it is possible to form a sen-
tence which is true if and only if the machine deposits
the ball into the top chute. Thus, considering reasoners
which are uncertain about logical sentences is a useful
starting point. The problem of assigning probabilities
to sentences of logic naturally divides itself into two
parts.

First, how can probabilities consistently be assigned

to sentences? An agent assigning probability 1 to short
contradictions is hardly reasoning about the sentences
as if they are logical sentences: some of the logical struc-
ture must be preserved. But which aspects of the log-
ical structure? Preserving all logical implications re-
quires that the reasoner be deductively omnipotent, as
some implications φ → ψ may be very involved. The
standard answer in the literature is that a coherent as-
signment of probabilities to sentences corresponds to a
probability distribution over complete, consistent logi-
cal theories (Gaifman 1964; Christiano 2014a); that is,
an “impossible possibility” is any consistent assignment
of truth values to all sentences. Deductively limited
reasoners cannot have fully coherent distributions, but
they can approximate these distributions: for a deduc-
tively limited reasoner, “impossible possibilities” can be
any assignment of truth values to sentences that looks
consistent so far, so long as the assignment is discarded
as soon as a contradiction is introduced.

Technical problem (Impossible Possibilities). How
can deductively limited reasoners approximate reasoning
according to a probability distribution over complete the-
ories of logic? For a discussion, see Christiano (2014a).

Second, what is a satisfactory prior probability dis-
tribution over logical sentences? If the system is in-
tended to reason according to a theory at least as
powerful as Peano Arithmetic (PA), then that theory
will be incomplete (Gödel, Kleene, and Rosser 1934).
What prior distribution places nonzero probability on
the set of complete extensions of PA? Deductively lim-
ited agents would not be able to literally use such a
prior, but if it were computably approximable, then
they could start with a rough approximation of the prior
and refine it over time. Indeed, the process of refining a
logical prior—getting better and better probability es-
timates for given logical sentences—captures the whole
problem of reasoning under logical uncertainty in minia-
ture. Hutter et al. (2013) has defined a desirable prior,
but Sawin and Demski (2013) have shown that it can-
not be computably approximated. Demski (2012) and
Christiano (2014a) have also proposed logical priors,
but neither seems fully satisfactory. The specification
of satisfactory logical priors is difficult in part because
it is not yet clear which properties are desirable in a
logical prior, nor which properties are possible.

Technical problem (Logical Priors). What is a sat-
isfactory set of priors over logical sentences that a
bounded reasoner can approximate? For a discussion,
see Soares and Fallenstein (2015).

Many existing tools for studying reasoning, such as
game theory, standard probability theory, and Bayesian
networks, all assume that reasoners are logically omni-
scient. A theory of reasoning under logical uncertainty
seems necessary to formalize the problem of naturalized
induction, and to generate a satisfactory theory of coun-
terfactual reasoning. If these tools are to be developed,
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extended, or improved, then a better understanding of
logically uncertain reasoning is required.

2.4 Vingean Reflection

Instead of specifying superintelligent systems directly, it
seems likely that humans may instead specify generally
intelligent systems that go on to create or attain super-
intelligence. In this case, the reliability of the resulting
superintelligent system depends upon the reasoning of
the initial system which created it (either anew or via
self-modification).

If the agent reasons reliably under logical uncer-
tainty, then it may have a generic ability to evaluate
various plans and strategies, only selecting those which
seem beneficial. However, some scenarios put that log-
ically uncertain reasoning to the test more than oth-
ers. There is a qualitative difference between reasoning
about simple programs and reasoning about human-
level intelligent systems. For example, modern program
verification techniques could be used to ensure that a
“smart” military drone obeys certain rules of engage-
ment, but it would be a different problem altogether
to verify the behavior of an artificial military general
which must run an entire war. A general has far more
autonomy, ability to come up with clever unexpected
strategies, and opportunities to impact the future than
a drone.

A self-modifying agent (or any agent which con-
structs new agents more intelligent than itself) must
reason about the behavior of an agent which is more
intelligent than the reasoner. This type of reasoning
is critically important to the design of self-improving
agents: if a system will attain self-modification through
superintelligence, then the impact of the system de-
pends entirely upon the correctness of the original
agent’s reasoning about its self-modifications (Fallen-
stein and Soares 2015).

Before trusting a system to attain superintelligence,
it seems prudent to ensure that the agent uses appro-
priate caution when reasoning about successor agents.3

That is, it seems necessary to understand the mecha-
nisms by which agents reason about smarter systems.

Naive tools for reasoning about plans including
smarter agents, such as backwards induction (Ben-
Porath 1997), would have the reasoner evaluate the
smarter agent by simply checking what the smarter
agent would do. This does not capture the difficulty
of the problem: a parent agent cannot simply check
what its successor agent would do in all scenarios, for
if it could, then it would already know what actions its
successor will take, and the successor would not in any
way be smarter.

3. Of course, if an agent reasons perfectly under logical
uncertainty, it would also reason well about the construction
of successor agents. However, given the fallibility of human
reasoning and the fact that this path is critically important,
it seems prudent to verify the agent’s reasoning methods in
this scenario specifically.

Yudkowsky and Herreshoff (2013) call this observa-
tion the “Vingean principle,” after Vernor Vinge (1993),
who emphasized how difficult it is for humans to predict
the behavior of smarter-than-human agents. Any agent
reasoning about more intelligent successor agents must
do so abstractly, without pre-computing all actions that
the successor would take in every scenario. We refer to
this kind of reasoning as Vingean reflection.

Technical problem (Vingean Reflection). How can
agents reliably reason about agents which are smarter
than themselves, without violating the Vingean princi-
ple? For discussion, see Fallenstein and Soares (2015).

It may seem premature to worry about how agents
reason about self-improvements before developing a
theoretical understanding of reasoning under logical un-
certainty in general. However, it seems to us that work
in this area can inform understanding of what sort of
logically uncertain reasoning is necessary to reliably
handle Vingean reflection.

Given the high stakes when constructing sys-
tems smarter than themselves, artificial agents might
use some form of extremely high-confidence reason-
ing to verify the safety of potentially dangerous self-
modifications. When humans desire extremely high re-
liability, as is the case for (e.g.) autopilot software, we
often use formal logical systems (US DoD 1985; UK
MoD 1991). High-confidence reasoning in critical situ-
ations may require something akin to formal verification
(even if most reasoning is done using more generic log-
ically uncertain reasoning), and so studying Vingean
reflection in the domain of formal logic seems like a
good starting point.

Logical models of agents reasoning about agents
that are “more intelligent,” however, run into a number
of obstacles. By Gödel’s second incompleteness theorem
(1934), sufficiently powerful formal systems cannot rule
out the possibility that they may be inconsistent. This
makes it difficult for agents using formal logical reason-
ing to verify the reasoning of similar agents which also
use formal logic for high-confidence reasoning; the first
agent cannot verify that the latter agent is consistent.
Roughly, it seems desirable to be able to develop agents
which reason as follows:

This smarter successor agent uses reasoning
similar to mine, and my own reasoning is
sound, so its reasoning is sound as well.

However, Gödel, Kleene, and Rosser (1934) showed that
this sort of reasoning leads to inconsistency, and these
problems do in fact make Vingean reflection difficult
in a logical setting (Fallenstein and Soares 2015; Yud-
kowsky 2013).

Technical problem (Löbian Obstacle). How can
agents gain very high confidence in agents that use simi-
lar reasoning systems, while avoiding paradoxes of self-
reference? For discussion, see Fallenstein and Soares
(2015).
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These results may seem like artifacts of models
rooted in formal logic, and may seem irrelevant given
that practical agents must eventually use logical uncer-
tainty rather than formal logic to reason about smarter
successors. However, it has been shown that many of
the Gödelian obstacles carry over into early probabilis-
tic logics in a straightforward way, and some results
have already been shown to apply in the domain of log-
ical uncertainty (Fallenstein 2014).

Study into toy models of the formal logical set-
ting has led to partial solutions (Fallenstein and Soares
2014). Recent work has pushed these models to-
wards probabilistic settings (Fallenstein and Soares
2014; Yudkowsky 2014; Soares 2014). Further research
may continue driving the development of methods for
reasoning under logical uncertainty which can handle
Vingean reflection in a reliable way (Fallenstein and
Soares 2015).

3 Error-Tolerant Agent Designs

Incorrectly specified superintelligent agents could be
dangerous (Yudkowsky 2008). Correcting a modern AI
system involves simply shutting the system down and
modifying its source code. Modifying a smarter-than-
human system may prove more difficult: systems at-
taining superintelligence could acquire new hardware,
alter its software, create subagents, and take other ac-
tions that would leave the original programmers with
only dubious control over the agent. This is especially
true if the agent has incentives to resist modification
or shutdown. If intelligent systems are to be safe,
they must be constructed in such a way that they are
amenable to correction, even if they have the ability to
prevent or avoid correction.

This does not come for free: by default, agents have
incentives to preserve their own preferences, even if
those conflict with the intentions of the programmers
(Omohundro 2008; Soares and Fallenstein 2015). Spe-
cial care is needed to specify agents that avoid the de-
fault incentives to manipulate and deceive (Bostrom
2014, chap. 8).

Restricting the actions available to a superintelli-
gent agent may be quite difficult (chap. 9). Intelligent
optimization processes often find unexpected ways to
fulfill their optimization criterion using whatever re-
sources are at their disposal; recall the evolved os-
cillator of Bird and Layzell (2002) which re-purposed
printed circuit tracks as a makeshift radio. Superintel-
ligent optimization processes may well use hardware,
software, and other resources in unanticipated ways,
making them difficult to contain if they have incentives
to escape.

We must learn how to design agents which do not
have incentives to escape, manipulate, or deceive in the
first place: agents which reason as if they are incomplete
and potentially flawed in dangerous ways, and which are
therefore amenable to online correction. Reasoning of

this form is known as “corrigible reasoning.”

Technical problem (Corrigibility). What sort of rea-
soning can reflect the fact that an agent is incomplete
and potentially flawed in dangerous ways? For discus-
sion, see Soares and Fallenstein (2015).

Näıve attempts at specifying corrigible behavior
are unsatisfactory: For example, “moral uncertainty”
frameworks could allow agents to learn values through
observation and interaction, but would still incentivize
agents to resist changes to the underlying moral uncer-
tainty framework if it happened to be flawed. Simple
“penalty terms” for manipulation and deception also
seem doomed to failure: such agents would have in-
centives to resist modification while cleverly avoiding
the technical definitions of “manipulation” and “decep-
tion.” The goal is not to design systems that fail in
their attempts to deceive the programmers; the goal is
to understand reasoning methods that do not give rise
to deception incentives in the first place.

A formalization of the intuitive notion of corrigibil-
ity remains elusive. Active research is currently focused
on small toy problems, in the hopes that insight gained
there will generalize. One such toy problem is the “shut-
down problem,” which involves designing a set of pref-
erences that incentivize an agent to shutdown upon the
press of a button without also incentivizing the agent
to either cause or prevent the pressing of that button
(Soares and Fallenstein 2015). Stuart Armstrong’s util-
ity indifference technique (forthcoming) provides a par-
tial solution, but not a fully satisfactory one.

Technical problem (Utility Indifference). Can a util-
ity function be specified such that agents maximizing
that utility function switch their preferences on demand,
without having incentives to cause or prevent the switch-
ing? For discussion, see Armstrong (forthcoming).

A better understanding of corrigible reasoning is es-
sential to design agent architectures that are tolerant
of human error. Other research could also prove fruit-
ful, including research into reliable containment mech-
anisms. Alternatively, agent designs could somehow in-
centivize the agent to have a “low impact” on the world.
Specifying “low impact” is trickier than it may seem:
How do you tell an agent that it can’t affect the physi-
cal world, given that its RAM is physical? How do you
tell it that it can only use its own hardware, without
allowing it to use its motherboard as a makeshift ra-
dio? How do you tell it not to cause big changes in the
world when its behavior influences the actions of the
programmers, who influence the world in chaotic ways?

Technical problem (Domesticity). How can an intel-
ligent agent be safely incentivized to have a low impact?
Specifying such a thing is not as easy as it seems. For
a discussion, see Armstrong, Sandberg, and Bostrom
(2012).

Regardless of the methodology used, it is crucial to
understand designs for agents that could be updated
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and modified during the development process, so as to
ensure that the inevitable human errors do not lead to
catastrophe.

4 The Value Learning Problem

A highly-reliable, error-tolerant agent design does not
guarantee positive impact: the benefit of the system
still depends entirely upon whether it is given appro-
priate goals.

A superintelligent system may find clever, unin-
tended ways to achieve the specific goals that it is given.
Imagine a superintelligent system designed to cure can-
cer which does so by stealing resources, proliferating
robotic laboratories at the expense of the biosphere,
and kidnapping test subjects: the intended goal may
have been “cure cancer without doing anything bad,”
but such a goal is rooted in cultural context and shared
human knowledge.

It is not sufficient to construct systems that are
smart enough to figure out the intended goals: Human
beings, upon learning that natural selection “intended”
sex to be pleasurable only for purposes of reproduction,
do not suddenly decide that contraceptives are abhor-
rent. While one should not anthropomorphize natural
selection, humans are capable of understanding the pro-
cess which created them while being completely unmo-
tivated to alter their preferences. For similar reasons,
when developing artificial intelligent agents, is not suf-
ficient to develop a system intelligent enough to figure
out the intended goals; the system must also be explic-
itly constructed to pursue them (Bostrom 2014, chap.
8).

However, the “intentions” of the operators are a
complex, vague, fuzzy, context-dependent notion (Yud-
kowsky 2011). Concretely writing out the full inten-
tions of the operators in a machine-readable format is
implausible if not impossible, even for simple tasks. An
intelligent agent must be designed to learn and act ac-
cording to the preferences of its operators.4 This is the
value learning problem.

Directly programming a rule which identifies cats
in images is implausibly difficult, but specifying a sys-
tem which inductively learns how to identify cats in im-
ages is possible. Similarly, while directly programming
a rule capturing complex human intentions is implausi-
bly difficult, intelligent agents could be constructed to
inductively learn values from training data.

Inductive value learning presents unique difficulties.
The goal is to develop a system which can classify po-
tential outcomes according to their value, but what sort
of training data allows this classification? The labeled
data could be given in terms of the agent’s world model,

4. Or of all humans, or of all sapient creatures, etc. There
are many philosophical concerns surrounding what sort of
goals are ethical when aligning a superintelligent system,
but a solution to the value learning problem is important
regardless.

but this is a brittle solution if the ontology of the world
model is liable to change. Alternatively, the labeled
data could come in terms of observations, in which case
the agent would have to first learn how the labels in
the observations map onto objects in the world model,
and then learn how to classify outcomes. Designing
algorithms which can do this likely requires a better
understanding of methods for constructing multi-level
world models from sense data.

Technical problem (Multi-level World Models). How
can multi-level world models be constructed from sense
data in a manner amenable to ontology identification?
For a discussion, see Soares (2015b).

Standard problems of inductive learning arise, as
well: how could a training set be constructed which al-
lows the agent to fully learn the complexities of value?
It is easy to imagine a training set which labels many
observations of happy humans as “good” and many ob-
servations of needlessly suffering humans as “bad,” but
the simplest generalization from this data set may well
be that humans value human-shaped things mimicking
happy emotions: after training on this data, an agent
may be inclined to construct many simple animatronics
mimicking happiness. Creating a training set that cov-
ers all relevant dimensions of human value is difficult
for the same reason that specifying human value di-
rectly is difficult. In order for inductive value learning
to succeed, it is necessary to construct a system which
identifies ambiguities in the training set—dimensions
along which the training set gives no information—and
queries the operators accordingly.

Technical problem (Ambiguity Identification).
Given a training data set and a world model, how can
dimensions which are neglected by the training data be
identified? For discussion, see Soares (2015b).

This problem is not unique to value learning, but it is
especially important for it. Research into the program-
matic identification of ambiguities, and the generation
of “queries” which are similar to previous training data
but differ along the ambiguous axis, would assist in the
development of systems which can safely perform in-
ductive value learning.

Intuitively, an intelligent agent should be able to use
some of its intelligence to assist in this process: it does
not take a detailed understanding of the human psyche
to deduce that humans care more about some ambigu-
ities (are the human-shaped things actually humans?)
than others (does it matter if there is a breeze?). To
build a system that acts as intended, the system must
model the intentions of the operators and act accord-
ingly. This adds another layer of indirection: the sys-
tem must model the operators in some way, and must
extract “preferences” from the operator-model and up-
date its preferences accordingly (in a manner robust
against improvements to the model of the operator).
Techniques such as inverse reinforcement learning (Ng
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and Russell 2000), in which the agent assumes that the
operator is maximizing some reward function specified
in terms of observations, are a good start, but many
questions remain unanswered.

Technical problem (Operator Modeling). By what
methods can an operator be modeled in such a way
that (1) a model of the operator’s preferences can be
extracted; and (2) the model may eventually become ar-
bitrarily accurate and represent the operator as a sub-
system embedded within the larger world? For a discus-
sion, see Soares (2015b).

A system which acts as the operators intend may
still have significant difficulty answering questions that
the operators themselves cannot answer: imagine hu-
mans trying to design an artificial agent to do what they
would want, if they were better people. How can nor-
mative uncertainty (uncertainty about moral claims) be
resolved? Bostrom (2014, chap. 13) suggests an addi-
tional level of indirection: task the system with reason-
ing about what sorts of conclusions the operators would
come to if they had more information and more time
to think. Formalizing this is difficult, and the prob-
lems are largely still in the realm of philosophy rather
than technical research. However, Christiano (2014b)
has sketched one possible method by which the volition
of a human could be extrapolated, and Soares (2015b)
discusses some potential pitfalls.

Philosophical problem (Normative Uncertainty).
What ought one do when one is uncertain about what
one ought to do? What norms govern uncertainty about
normative claims? For a discussion, see MacAskill
(2014).

Human operators with total control over a super-
intelligent system could give rise to a moral hazard
of extraordinary proportions by putting unprecedented
power into the hands of a small few (Bostrom 2014,
chap. 6). The extraordinary potential of superintel-
ligence gives rise to many questions of morality and
ethics. When constructing systems intended to have a
great ability to control the future, it is important to
consider the construction of agents which not only act
according to the intentions of the operators, but also
in the interest of all humanity or perhaps all sentient
life. Here we largely leave the philosophical questions
aside, and remark only that those who design systems
intended for superintelligence will take on a responsi-
bility of unprecedented scale.

5 Discussion

Sections 2 through 4 discussed six research topics where
the authors think that further research could make it
easier to develop aligned systems in the future. This
section discusses our reasons for selecting these six top-
ics in particular, and the reasons why we think that
useful progress can be made today.

5.1 Research that Cannot be Delegated

Creating a superintelligent system aligned with human
interests does not require specifying an aligned super-
intelligent system from scratch. On the path to great
intelligence, much of the work may be done by smarter-
than-human systems. Since the Dartmouth Proposal
(McCarthy et al. 1955), it has been a standard idea in
AI that a sufficiently smart machine intelligence could
be intelligent enough to improve itself. In 1965, I. J.
Good observed that this might create a positive feed-
back loop leading to an “intelligence explosion” (Good
1965). Bostrom (2014, chap. 4) has observed that an
intelligence explosion is especially likely if the agent has
the ability to acquire more hardware, improve its soft-
ware, or design new hardware.

With this in mind, we must therefore focus on re-
search that cannot be safely delegated to machines.
Corrigibility research is a good example: the design of
corrigible reasoning can hardly be delegated to agents
that have incentives to manipulate and deceive. To con-
struct corrigible systems, humans must first gain a bet-
ter understanding of corrigibility.

By contrast, consider the fields of computer vision
or natural language processing, where intelligent agents
would have incentives to correct and improve the rele-
vant tools so as to enhance their ability to model and
interact with the world.

The topics discussed in this agenda are ones that
we believe are difficult to delegate to intelligent agents.
Why can’t these tasks, too, be delegated? Why not,
e.g., design a system that makes “good enough” de-
cisions, constrain it to domains where its decisions are
trusted, and then let it develop a better decision theory,
perhaps using an indirect normativity approach (chap.
13) to figure out how humans would have wanted it to
make decisions?

We cannot delegate these tasks because modern
knowledge is not sufficient even for an indirect ap-
proach. Even if fully satisfactory theories of logical un-
certainty and decision theory cannot be obtained, it is
still important to have a sufficient theoretical grasp on
the obstacles in order to justify high confidence in the
system’s ability to correctly perform indirect normativ-
ity.

Furthermore, it would be risky to delegate a crucial
task before attaining a solid theoretical understanding
of exactly what task is being delegated. It is possible
to create an intelligent system tasked with developing
better and better approximations of Bayesian updat-
ing, but it would be difficult to delegate the abstract
task of “find good ways to update probabilities” to an
intelligent system before gaining an understanding of
Bayesian reasoning. The theoretical understanding is
useful to ensure that the right questions are being asked.
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5.2 Topics that are Tractable, Uncrowded,
and Focused

This technical agenda primarily covers topics that we
believe are tractable, that is, topics which contain con-
crete open problems, where progress could be made
immediately. Ultimately, significant effort will be re-
quired to actually align real smarter-than-human sys-
tems with human interests, but in lieu of working de-
signs for smarter-than-human systems, it is difficult if
not impossible to begin that work in advance. Instead,
this agenda focuses on research geared towards gaining
a better understanding of the problems faced by an in-
telligent system embedded within reality. Regardless of
whether practical smarter-than-human systems arise in
ten years or in one hundred years, we will be better able
to design safe systems if we understand these problems.

This agenda further limits attention to uncrowded
domains, where there is not already an abundance of
research being done, and where the problems may not
be solved over the course of “normal” AI research. For
example, program verification techniques are absolutely
crucial in the design of extremely reliable programs, but
program verification is not covered in this agenda pri-
marily because a vibrant community is already actively
studying the topic.

Finally, this agenda restricts consideration to topics
that are focused on developing tools useful for design-
ing aligned systems in particular (as opposed to intel-
ligent systems in general). It may be possible to de-
velop a practical understanding of intelligence that is
sufficient to spark an intelligence explosion before de-
veloping a theoretical understanding of reasoning that
is sufficient to construct a reliably aligned system. This
could result in scenarios where teams have incentives to
cut corners or take risks, and these incentives could be
dangerous (Bostrom 2014, chap. 14). Currently, signif-
icant research effort is focused on improving the capa-
bilities of artificially intelligent systems, and compara-
tively little effort is focused on superintelligence align-
ment (Bostrom 2014, chap. 14). Therefore, this agenda
focuses on research that improves the ability to design
aligned systems in particular.

5.3 Theoretical Research Approachable
Today

Why is so much of this technical agenda focused on
topics such as decision theory and logical uncertainty?
Shouldn’t superintelligence alignment research focus
primarily on AI constraint or on value learning? Some
think that this agenda sounds more like generic theo-
retical AI research than alignment-specific research.

Progress on the topics outlined in this agenda could
indeed make it easier to design intelligent systems in
general. Just as the intelligence metric of Legg and Hut-
ter (2007) lent insight into the ideal priors for agents
facing Hutter’s interaction problem, a full description
of the naturalized induction problem could lend in-

sight into the ideal priors for agents embedded within
their universe. A satisfactory theory of logical uncer-
tainty could lend insight into general intelligence more
broadly. An ideal decision theory could reveal an ideal
decision-making procedure for real agents to approxi-
mate.

But while these advancements might provide tools
useful for designing intelligent systems in general, they
would make it drastically easier to design aligned sys-
tems in particular. Idealized solutions, while imprac-
tical, provide the conceptual tools necessary to reason
about practical solutions. Though no chess-playing pro-
gram evaluates a full game tree, it would be very dif-
ficult to design a reliable chess program without first
understanding the conceptual tools of backtracking al-
gorithms and search trees (or something equivalent).
It is much easier to design trustworthy heuristics af-
ter figuring out exactly what solution the heuristic is
supposed to approximate.

Conversely, if we must evaluate real systems com-
posed of practical heuristics before formalizing the the-
oretical problems that those heuristics are supposed to
solve, then we will be forced to rely on unreliable intu-
ition; we will be vulnerable to bias and overconfidence
while attempting to provide an answer before we have
finished understanding the question.

The theoretical understanding might not be devel-
oped by default. Causal counterfactual reasoning, de-
spite being unsatisfactory, may be good enough to en-
able the construction of a smarter-than-human system.
Heuristics for reasoning under logical uncertainty could
yield smarter-than-human systems that work for rea-
sons we don’t quite understand. Systems built from
unsatisfactory and poorly understood heuristics might
be capable of creating or attaining superintelligence—
but it is unlikely that such systems could be aligned
with human interests.

Sometimes theory precedes application, but some-
times it does not. The goal of much of the research
outlined in this agenda is to ensure, in the domain of su-
perintelligence alignment—where the stakes are incred-
ibly high—that theoretical understanding comes first.

5.4 What If This Work is Irrelevant?

This is a hazard of any attempt to do work in advance.
The question is not whether the work has a certainty
of being helpful, the question is whether it’s wiser to
start now or to try to come up with all the relevant
theory at the last minute. We have identified a num-
ber of unanswered foundational questions relating to
the development of general intelligence, and at present
it seems possible to make promising progress. The pru-
dent course, then, is to begin as soon as possible.

5.5 Why Start Now?

It is prudent to develop a theory of superintelligence
alignment before developing a system capable of attain-
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ing or creating superintelligence. It may seem prema-
ture to tackle the problem now, with superintelligent
systems still firmly in the domain of futurism. But
imagine the chagrin if, in a few decades, the need for a
mature theory of corrigibility is imminent, but the field
is just as immature as seen in this technical agenda!

We think it is wise to approach these problems as
soon as they look approachable. To do otherwise seems
to us like a cognitive bias surrounding the fear of wasted
effort, rather than a prudent calculation of the probable
consequences of doing something versus nothing.

Weld and Etzioni (1994) made a call to arms, noting
that “society will reject autonomous agents unless we
have some credible means of making them safe.” We are
concerned with the opposite problem: what if society
fails to reject systems that are unsafe? What will be
the consequences, if someone believes a smarter-than-
human system is aligned with human interests, when it
is not?

This document is our call to arms: regardless of
whether or not research efforts follow the path laid out
in this document, significant research effort must be
focused on the study of superintelligence alignment as
soon as possible.
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Gödel, Kurt, Stephen Cole Kleene, and John Barkley
Rosser. 1934. On Undecidable Propositions of Formal
Mathematical Systems. Princeton, NJ: Institute for Ad-
vanced Study.

Good, Irving John. 1965. “Speculations Concerning the
First Ultraintelligent Machine.” In Advances in Com-
puters, edited by Franz L. Alt and Morris Rubinoff,
6:31–88. New York: Academic Press. doi:10 . 1016 /
S0065-2458(08)60418-0.

Halpern, Joseph Y. 2003. Reasoning about Uncertainty.
Cambridge, MA: MIT Press.

12

http://dx.doi.org/10.1007/s11023-012-9282-2
http://arxiv.org/abs/1401.5577
http://dx.doi.org/10.2307/2971739
http://lesswrong.com/lw/jd9/building_phenomenological_bridges/
http://lesswrong.com/lw/jd9/building_phenomenological_bridges/
http://dx.doi.org/10.1109/CEC.2002.1004522
http://intelligence.org/files/Non-Omniscience.pdf
http://intelligence.org/files/Non-Omniscience.pdf
http://ordinaryideas.wordpress.com/2014/08/27/specifying-enlightened-judgment-precisely-reprise/
http://ordinaryideas.wordpress.com/2014/08/27/specifying-enlightened-judgment-precisely-reprise/
http://ordinaryideas.wordpress.com/2014/08/27/specifying-enlightened-judgment-precisely-reprise/
http://ordinaryideas.wordpress.com/2014/08/27/specifying-enlightened-judgment-precisely-reprise/
http://arxiv.org/abs/1105.3821
http://arxiv.org/abs/1105.3821
http://dx.doi.org/10.1007/978-3-642-35506-6_6
http://dx.doi.org/10.1007/978-3-642-35506-6_6
http://intelligence.org/files/ProbabilisticLogicProcrastinates.pdf
http://intelligence.org/files/ProbabilisticLogicProcrastinates.pdf
http://dx.doi.org/10.1007/978-3-319-09274-4_3
https://intelligence.org/files/VingeanReflection.pdf
https://intelligence.org/files/VingeanReflection.pdf
http://dx.doi.org/10.1007/BF02759729
http://dx.doi.org/10.1023/B:SYNT.0000029944.99888.a7
http://dx.doi.org/10.1023/B:SYNT.0000029944.99888.a7
http://dx.doi.org/10.1016/S0065-2458(08)60418-0
http://dx.doi.org/10.1016/S0065-2458(08)60418-0


Hintze, Daniel. 2014. Problem Class Dominance in Predic-
tive Dilemmas. Machine Intelligence Research Insti-
tute, Berkeley, CA, April 23. http://intelligence.
org/files/ProblemClassDominance.pdf.

Hutter, Marcus. 2000. “A Theory of Universal Artificial In-
telligence based on Algorithmic Complexity.” Unpub-
lished manuscript, April 3. http://arxiv.org/abs/
cs/0004001.

Hutter, Marcus, John W. Lloyd, Kee Siong Ng, and William
T. B. Uther. 2013. “Probabilities on Sentences in an
Expressive Logic.” Journal of Applied Logic 11 (4):
386–420. doi:10.1016/j.jal.2013.03.003.

Jeffrey, Richard C. 1983. The Logic of Decision. 2nd ed.
Chicago: Chicago University Press.

Joyce, James M. 1999. The Foundations of Causal Decision
Theory. Cambridge Studies in Probability, Induction
and Decision Theory. New York: Cambridge University
Press. doi:10.1017/CBO9780511498497.

Legg, Shane, and Marcus Hutter. 2007. “Universal Intel-
ligence: A Definition of Machine Intelligence.” Minds
and Machines 17 (4): 391–444. doi:10.1007/s11023-
007-9079-x.

Lehmann, E. L. 1950. “Some Principles of the Theory of
Testing Hypotheses.” Annals of Mathematical Statis-
tics 21 (1): 1–26. doi:10.1214/aoms/1177729884.

Lewis, David. 1979. “Prisoners’ Dilemma is a Newcomb
Problem.” Philosophy & Public Affairs 8 (3): 235–240.
http://www.jstor.org/stable/2265034.

. 1981. “Causal Decision Theory.” Australasian
Journal of Philosophy 59 (1): 5–30. doi:10 . 1080 /
00048408112340011.
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